Polygonal finite elements for finite elasticity

ثبت نشده
چکیده

Nonlinear elastic materials are of great engineering interest, but challenging to model with standard fi nite elements. The challenges arise because nonlinear elastic materials are characterized by nonconvex stored-energy functions as a result of their ability to undergo large reversible deformations, are incompressible or nearly incompressible, and often times possess complex microstructures. In this study, we propose and explore an alternative approach to model fi nite elasticity problems in two dimensions by using polygonal discretizations. We present both lower order displacement-based and mixed polygonal fi nite element approximations, the latter of which consist of a piecewise constant pressure fi eld and a linearly-complete displacement fi eld at the element level. Through numerical studies, the mixed polygonal fi nite elements are shown to be stable and convergent. For demonstration purposes, we deploy the proposed polygonal discretization to study the nonlinear elastic response of rubber fi lled with random and periodic distributions of rigid particles, as well as the development of cavitation instabilities in elastomers containing vacuous defects. These physically based examples illustrate the potential of polygonal fi nite elements in studying and modeling nonlinear elastic materials with complex microstructures under fi nite deformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Fixed Grid Finite Element Method to Solve 3D Elasticity Problems of Functionally Graded Materials

In the present paper, applicability of the modified fixed grid finite element method in solution of three dimensional elasticity problems of functionally graded materials is investigated. In the non-boundary-fitted meshes, the elements are not conforming to the domain boundaries and the boundary nodes which are used in the traditional finite element method for the application of boundary condit...

متن کامل

Sensitivity Analysis of Road Actual Conditions to Evaluate the Optimal Positioning of Geogrid Using Finite Elements and Dynamic Methods

Roads are subjected to vehicle traffics with different loads and velocities. Geogrid reinforcement is of the best methods for road improvement due to the ease of construction, delay in damage development and financial efficiency. This study evaluates pavement response under different loads and velocities, before and after geogrid reinforcement. A finite element software (ABAQUS) is used for num...

متن کامل

Discontinuous Galerkin FEM for Elliptic Problems in Polygonal Domains (Abstract)

The present work is concerned with the analysis of the Discontinuous Galerkin Finite Element Method (DGFEM) for linear • diffusion problems, • elasticity problems,

متن کامل

An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow

In this work we introduce a discrete functional space on general polygonal or polyhedral meshes which mimics two important properties of the standard Crouzeix–Raviart space, namely the continuity of mean values at interfaces and the existence of an interpolator which preserves the mean value of the gradient inside each element. The construction borrows ideas from both Cell Centered Galerkin and...

متن کامل

Vem and Topology Optimization on Polygonal Meshes

Topology optimization is a fertile area of research that is mainly concerned with the automatic generation of optimal layouts to solve design problems in Engineering. The classical formulation addresses the problem of finding the best distribution of an isotropic material that minimizes the work of the external loads at equilibrium, while respecting a constraint on the assigned amount of volume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014